A brief description of ITB

- Institut Teknologi Bandung (ITB), was founded on March 2, 1959. The present ITB main campus is the site of earlier engineering schools in Indonesia. Although these institutions of higher learning had their own individual characteristics and missions, they left influence on developments leading to the establishment of ITB.
- In 1920, Technische Hogeschool (TH) was established in Bandung, which for a short time, in the middle forties, became Kogyo Daigaku. Not long after the birth of the Republic of Indonesia in 1945, the campus housed the Technical Faculty (including a Fine Arts Department) of Universitas Indonesia, with the head office in Jakarta. In the early fifties, a Faculty of Mathematics and Natural Sciences, also part of Universitas Indonesia, was established on the campus.
- In 1959, the present Institut Teknologi Bandung was founded by the Indonesian government as an institution of higher learning of science, technology, and fine arts, with a mission of education, research, and service to the community.
- Government Decree No. 155/2000 pertaining to The Decision on ITB as Legal Enterprise (Badan Hukum) has opened a new path for ITB to become autonomous. The status of autonomy implies a freedom for the institution to manage its own business in an effective and efficient way, and to be fully responsible for the planning and implementation of all program and activity, and the quality control for the attainment of its institutional objective. The institution has also freedom in deviating their measures and taking calculated risks in facing tight competition and intense pressures.
- Location
 Bandung, with a population of approximately one and a half million, lies in the mountainous area of West Java, at an altitude of 770 meters. The ITB main campus, to the north of the town centre, and its other campuses, cover a total area of 770,000 square meters.
- Address
 Office: Jl. Tamansari 64 Bandung 40116
 Campus: Jl. Ganesha 10 Bandung 40132 Indonesia
 Tel & Fax +62-22-2500935, www.itb.ac.id
Faculty in ITB

Institut Teknologi Bandung (ITB) is a state academic institution, located in Bandung (the capital city of West Java Province that lied in the southern part of Jakarta). It has five faculties:

- Faculty of Civil Engineering and Planning,
- Faculty of Industrial Technology,
- Faculty of Earth Science and Mineral Technology,
- Faculty of Mathematics and Natural Science,
- Faculty of Art and Design

These five faculties offer both undergraduate and postgraduate study programs. Government of Indonesia funds the undergraduate program.

Faculty of Civil Engineering and Planning (FCEP)

- Faculty of Civil Engineering and Planning (FCEP) itself has five academic departments, and one study program:
 - Department of Civil Engineering.
 - Department of Geodetic
 - Department of Architecture
 - Department of Environmental Engineering
 - Department of Regional and City Planning
 - Study program of Ocean Engineering
In 1999/2000, Faculty of Civil Engineering and Planning has 2466 undergraduate students, 760 master students, 33 doctoral students, and 61 students of specialist program.

- Ratio between new students and total students in 1999/2000 is 20%. This number is lower than ITB ideal target (25%). Ratio between student body in every department/study program with the number of lecturer in 1999/2000 is 1:10. This number indicates performance and education service in undergraduate program.

Alumni of FCEP

- In the last five years (1995/1996-1999/2000) the productivity number of graduate students in undergraduate program is between 265 and 430 students every years. For masters program the graduate students in 1997 is 120 students, 1998 is 148 students; and 187 students in 1999. The number of graduate students of doctoral program in the last five years is between 2-4 students every year.
Research Center

Regarding to the disaster mitigation, ITB has a disaster mitigation research center, under the Center of Research Development and Empowerment (LPPM)

- To do the consultancy project.
- To provide training.
- To give input to government.

Developing Case Study
Institut Teknologi Bandung
Indonesia

“To determine the optimal location of civic center in the new regency (kabupaten) regarding the disaster management”
Objectives

- To determine the optimal location of civic center regarding the vulnerable area.
- To determine the advantage-disadvantage of the alternatives of civic center locations and their consequences to the preparedness of disaster mitigation.
- Working time: three weeks.
 - The first weeks: for collecting data and discussed about objectives and outputs.
 - The second weeks: progress reports.
 - The third weeks: final reports.

Basic Assumptions

- This case study will be given as a student paper in the elective subject with the title “new town planning” (2 credits, undergraduate study, elective courses).
- Disaster mitigation is a part of land use and urban planning analysis.
- It will be 2 iteration:
 - Analysis in a regency (kabupaten) context (1:100,000)
 - Analysis in a detail/internal context (kawasan) (1:50,000)
- Case study optimally using real data, and the rest using hipotetical data.
Steps of Activities

- **Step 1**: To analyze the role of regency in a regional or province and national context.
- **Step 2**: Land suitability analysis in a regency level (1:100,000) to identify: the possible area, constrain area, and limitation area.
- **Step 3**: To determine the alternatives location of civic center in detail level (1:50,000), not only regarding land suitability analysis but regarding the local socio-economic condition.
- **Step 4**: To determine the optimal location of civic center regarding development agents opinion:
 - Government opinion: want to use the land that owned by the government.
 - Public opinion: can be access by all the districts.
 - Citizen representatives: having good scenery to attract infestation.
- **Step 5**: To determine the consequences of the alternatives:
 - Disaster mitigation problems (landslides, flood, and technological hazards) that have to be faced.
 - Preparedness for disaster mitigation.
 - The sufficient size location for civic center.
 - The possibility to develop infrastructure.

Land Supply Inventory
- Land Policy Inventory
- Activity system
- Natural population
- Migrant population

Law and regulation related to spatial plan
- The role of regency in regional and national context

Specific physical, socio-economic conditions
- Vulnerability to disaster: land slide, flood, and technological hazard (mining exploitation).

Gov't opinion
- Want to use the land they owned.

Public opinion
- Can be accessed easily by all the districts.

Citizen representatives
- Having good scenery to attract infestation.

Disaster mitigation problems
- Landslide, flood, and technological hazards that have to be faced.
Basic Inputs

- A new regency (Penajam Paser Utara) in Kalimantan Island (East Kalimantan Province)

- Macro (regency) level:
 - Land supply inventory (existing land used)
 - Land policy inventory (the law and regulation related to urban planning and land used).

- Detail level:
 - Disaster problems.
 - Socio economic conditions.

Data

- National level: the law of spatial plan, the regulation of conservation and preservation area, the regulation of menmade environment, the regulation of standard of urban planning.

- Regency level:
 - Stone/rock distributions
 - Soil movements.
 - Slope-contour
 - Soil effective deepness
 - Flood area*
 - Hydrogeology
 - Rainfall
 - Forest conservation area
 - Factures
 - Industrial zone (mining exploitation)*

- Detail level:
 - Land owned by the local government.
 - The location of build up area that vulnerable to the mitigation: such as powerstation, mining exploitation location.

- Source of data: local gov’t planning board, geological research institution, statistical office.
Macro Analysis

- To overlay the evaluated factors:
 - Stone/rock distribution.
 - Soil movement.
 - Slope-contour.
 - Soil effective deepness
 - Flood area
 - Hydrogeology
 - Rainfall
- To overlay the constraint factors:
 - Conservation area
 - Landslides area
 - Distance that vulnerable to fractures
 - Flood area
 - Volcano eruption (not exist).
- To overlay the evaluated factors and the constraint factors

PARAMETER for Macro Analysis

A. Geological aspect
 1. Geological aspect:
 - Water resources
 - morphology: drainage, slope
 - soil/rocks
 - mining material

B. Other physical aspects:
 conservation area, rivers, existing infrastructure (road, railways).
Evaluation Criterion of Physical Aspect

<table>
<thead>
<tr>
<th>NO</th>
<th>Geological aspects</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A. productivity of aquifer</td>
<td>The high the productivity of deep water resource, the high the water supply</td>
</tr>
<tr>
<td>2.</td>
<td>B. dept of deep water resource</td>
<td>The shallow of deep water location will easily to be taken</td>
</tr>
<tr>
<td>3.</td>
<td>C. deep water quality</td>
<td>Main requirement for urban area consumptions</td>
</tr>
<tr>
<td>4.</td>
<td>slope</td>
<td>Influence the construction and material cost for build up area</td>
</tr>
<tr>
<td>5.</td>
<td>Geology/litology</td>
<td>Impacted into carrying capacity of the building</td>
</tr>
</tbody>
</table>

Geologic hazard

<table>
<thead>
<tr>
<th>NO</th>
<th>geological hazard</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>earthquake</td>
<td>Interfere with building construction</td>
</tr>
<tr>
<td>5.</td>
<td>landslide</td>
<td>Interfere with building construction</td>
</tr>
<tr>
<td>6.</td>
<td>fault</td>
<td>Interfere with building construction</td>
</tr>
<tr>
<td>7.</td>
<td>volcanoes eruption</td>
<td>Harmful to human living</td>
</tr>
<tr>
<td>8.</td>
<td>Tsunami</td>
<td>Harmful to human living</td>
</tr>
<tr>
<td>9.</td>
<td>Flood</td>
<td>Harmful to human living</td>
</tr>
</tbody>
</table>

Other Physical Aspects

<table>
<thead>
<tr>
<th>NO</th>
<th>components</th>
<th>criterion</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Conservation-preservation area</td>
<td>Within conservation-preservation area</td>
<td>Related to the national law and regulation</td>
</tr>
<tr>
<td>2.</td>
<td>Industrial area</td>
<td>Within industrial location</td>
<td>To avoid environmental pollution</td>
</tr>
<tr>
<td>3.</td>
<td>Airport location</td>
<td>Distance < 1000 M</td>
<td>To avoid sound pollution and resonance</td>
</tr>
<tr>
<td>4.</td>
<td>Road and railway</td>
<td>distance < 15 M</td>
<td>To avoid sound pollution and resonance</td>
</tr>
<tr>
<td>5.</td>
<td>River (more than 3 meter)</td>
<td>distance < 15 M</td>
<td>To avoid flood pollution</td>
</tr>
<tr>
<td>6.</td>
<td>Flood (with time period ≤ 25 year)</td>
<td>within flood area</td>
<td>To avoid human comfort and mobility</td>
</tr>
</tbody>
</table>
Method: quantitative-giving intensity value, weight, constraints for every parameter and overlay method (using GIS software)

A. Geological aspects
 - Intensity: significance level of parameter, value 1-7.
 - Optimality.
 - Safety.
 - Weight: the amount of constraint for every parameter, good-bad, between 1-5.

B. Other physical aspects
 - using law-regulation, planning standard, environmental protection.

OVERLAY

- To combine several geological information and other physical aspects:
 - Intensity X weight for every parameter.
 - The sum of parameter.
- Total value devided into 5 level urban area feasibility:
 - Very high: physical condition very good.
 - High: physical condition good.
 - Moderate: physical condition average.
 - Low: physical condition bad.
 - Very low: physical condition very bad.
 - Not suitable: physical condition not feasible according to the law/regulation and harmful to human living.
Rock/stone formation

- Formasi Pulubaling (nilai 5)
- Formasi Kampungbaru (nilai 5)
- Formasi Bako-pan (nilai 4)
- Formasi Bebulu (nilai 3)
- Endapan akural (nilai 1)
- Endapan pasir pantai (nilai 1)
Forest conservation

Facture formation
Industrial zone

- Zona industri (tidak layak)
Evaluation Criterion

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Class Dimension</th>
<th>weight</th>
<th>Intensity</th>
<th>value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anthropology</td>
<td>Average productivity & soil</td>
<td>5</td>
<td>7</td>
<td>32</td>
<td>Availability of clean water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spread distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average productivity & soil</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Slope</td>
<td>0-3%</td>
<td>6</td>
<td>6</td>
<td>36</td>
<td>The difficulty to build construction and operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-14%</td>
<td>3</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14-22%</td>
<td>2</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22-42%</td>
<td>1</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Flood</td>
<td>Low (potential for flood)</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>Possibility impacted by flood</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium (potential for flood)</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High (potential for flood)</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rainfall</td>
<td>High</td>
<td>5</td>
<td>4</td>
<td>20</td>
<td>Availability of breakthrough and supply of underground infrastructure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>3</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>1</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Soil movement</td>
<td>No soil movement</td>
<td>5</td>
<td>3</td>
<td>15</td>
<td>Possibility impacted by landslide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low soil movement</td>
<td>3</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium soil movement</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High soil movement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Rock characteristics</td>
<td>Sand</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>Carrying capacity of soil capable and the difficulty of digging</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sand with clay</td>
<td>4</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limestone</td>
<td>3</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clay and chalcedy</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Soil acidity</td>
<td>Rather deep</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>Carrying capacity of soil capable and the difficulty of digging</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Very deep</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Other Physical Aspects Criterion

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Limit to unfeasible</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Land that vulnerable to the Landslide</td>
<td>High zone</td>
<td>Safety</td>
</tr>
<tr>
<td>2</td>
<td>Distance to the facture</td>
<td>Not more than 300 meter</td>
<td>Unstable zone</td>
</tr>
<tr>
<td>3</td>
<td>Volcanos eruption</td>
<td>All of the vulnerable area</td>
<td>Safety</td>
</tr>
<tr>
<td>4</td>
<td>Flood area</td>
<td>Very high zone</td>
<td>Safety</td>
</tr>
<tr>
<td>5</td>
<td>Conservation-preservation area</td>
<td>All of the area</td>
<td>Based on law and regulation</td>
</tr>
</tbody>
</table>
Size of Each possible zone

Best feasible zone : 211,50 km²
Better feasible zone : 346,70 km²
feasible zone : 341,60 km²
Less feasible zone : 322,60 km²
Very less feasible zone : 966,70 km²
Infeasible zone : 784,60 km²

Evaluation Criteria

<table>
<thead>
<tr>
<th>NO.</th>
<th>PARAMETER</th>
<th>SATUKLAS</th>
<th>ROBOT</th>
<th>INTENSITAS</th>
<th>NILAI</th>
<th>KETERANGAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Batuan</td>
<td>Batu lempung</td>
<td>7</td>
<td>7</td>
<td>68</td>
<td>kemampuan menahan bahan pencemar atas kerusakan sebaran bahan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Batu lanau, napah, lempung</td>
<td>6</td>
<td>6</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Batu pasir, breksi sed. breksi volk.</td>
<td>5</td>
<td>5</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Breksi volk. Kwarter</td>
<td>4</td>
<td>4</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Batuan beku, aluvial</td>
<td>3</td>
<td>3</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Batu gamping</td>
<td>2</td>
<td>2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>tidak layak</td>
</tr>
<tr>
<td>2</td>
<td>Muka air tanah</td>
<td>> 10 meter</td>
<td>7</td>
<td>7</td>
<td>49</td>
<td>kemampuan terhindar pencemaran air tanah</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 – 10 meter</td>
<td>6</td>
<td>6</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 – 5 meter</td>
<td>5</td>
<td>5</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 3 meter</td>
<td>4</td>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>tidak layak</td>
</tr>
<tr>
<td>3</td>
<td>Kemiringan</td>
<td>0 – 5 %</td>
<td>7</td>
<td>7</td>
<td>49</td>
<td>kemudahan dalam konstruksi dan operasional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 – 10 %</td>
<td>6</td>
<td>6</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 – 20 %</td>
<td>5</td>
<td>5</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 20 %</td>
<td>4</td>
<td>4</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>tidak layak</td>
</tr>
<tr>
<td>4</td>
<td>Curah hujan</td>
<td>< 1000 mm</td>
<td>7</td>
<td>7</td>
<td>49</td>
<td>kemudahan pengelolaan air (leachate)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000 – 2000 mm</td>
<td>6</td>
<td>6</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000 – 3000 mm</td>
<td>5</td>
<td>5</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 3000 mm</td>
<td>4</td>
<td>4</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>tidak layak</td>
</tr>
</tbody>
</table>

Detail analysis

- To take the closer look to the suitable land for the civic center (urban area).
- Using the detail data which is a more specific contour maps (resulted from the field survey).
- Land supply that owned by the local government.
- Industrial strategic location (mining exploitation) that vulnerable to disaster.
- Giving the clue of the design and size of civic center regarding the local tradition (around 70-80 ha and using formal design "lamin"). This is not the ultimate objective of this task. However the main objective is how to select the optimal location and the consequences.
- Giving the clue how to select the optimal location of civic center and its consequences:
 - Ecological and disaster mitigation aspect.
 - Amenity aspect.
 - Ecological aspect: water resources and regional infrastructures.
 - Cultural aspect: “Dayak (local: Kalimantan) and Bugis (migrant: Sulawesi Island) culture”.
 - Development aspect.

3 Possible Scenario&Location

- Location 1: located at the government’s land.
 - Problem: near by the landslide location.
- Location 2: high accessibility.
 - Problem: near by mining exploitation.
- Location 3: coastal are.
 - Problem: flood (1 meter every year).
Prescriptions must be made by students:

- To choose one of the three scenario.
 - How to meet the need of three actors of development.
 - Give the attention to the existing social activity and economic base.
- The approach how to implement the plan.
 - Who’s going to implement the plan? (local government of private sector)
 - Who is and how to maintain the ideal plan
 - Which scenario is more cost effective
- The planning control, especially regarding the disaster mitigation:
 - How to plan/design the building that familiar with possible ‘disaster’.
 - How to elaborate and disseminate the preparation to the citizen.
 - To make a zoning regulation.

Formal philosophical design of civic center.
(4 block in a one Lamin)

- Religious symbol
- Legislative symbol
- Judicial symbol
- Executive symbol
IKHTISAR KONSEP PERANCANGAN
MASTER PLAN PUSAT PEMERINTAH
KABUPATEN PENAJAM PASER UTARA - KALIMANTAN TIMUR

Konsep Lamin digali dari Budaya Tata Bangunan Tradisional penduduk asli Kalimantan yang terdiri dari Lamin Memanjang dan Lamin Memusat.

Pembagian Fungsi-fungsi Kawasan
- Publik Area
- Semi Publik Area
- Semi Privat Area
- Privat Area

Ekspresi Wajah Bangunan pada kawasan terdiri atas: Kawasan Modern, Kawasan Historis, & Transisi

Perspektif kawasan dengan Tengaran atau Landmark pada pusat kawasan

Empat buah Tameng yang membentuk Lamin memusat, perwujudan Eksekutif, Legislatif, Yudikatif yang Religius, berKetuhanan YME

Simbolisasi Ekspresi Tameng

LAMIN UTAMA
LAMIN (KOMP LEK BANGUNAN 1 DES A)
LAMIN
LAMIN
LAMIN LAMIN
LAMIN
HISTORICAL AREA
TRANSITIONAL AREA
MODERN AREA

ESTIMASI UN TUK
70 Ha
PRIVATE AREA
SEMI PRIVATE AREA

KE SEPAKU
KE PERTIGAAN
GIRIMUKTI
JALAN LINGKAR

LEGENDA
1. MASJID AGUNG PENAJAM PASER UTARA
2. GEDUNG DPRD PENAJAM PASER UTARA
3. GEDUNG KANTOR BUPATI PENAJAM PASER UTARA & SEKDA
4. RUMAH DINAS BUPATI & SEKDA PENAJAM PASER UTARA
5. G EDUNG PENGADILAN NEGERI
6. G EDUNG MAKO DAM PENAJAM PASER UTARA
7. GEDUNG POLRES & PENJARA PENAJAM PASER UTARA
8. G EDUNG PENGADILAN AGAMA & KUA
9. G EDUNG KEJAKSAAN NEGRI
10. G EDUNG BADAN PERENCANAAN PEMBANGUNAN DAERAH
11. G EDUNG BADAN LINGKUNGAN HIDUP DAERAH
12. G EDUNG BADAN KEPEGAWAIAN DAERAH
13. G EDUNG BADAN PENGAWASAN DAERAH
14. G EDUNG PENGELOLAAN KEUANGAN DAERAH
15. G EDUNG DINAS PEKERJAAN UMUM
16. G EDUNG DINAS PENDIDIKAN NASIONAL
17. G EDUNG KESEHATAN
18. G EDUNG PERTAMBAGAN
19. G EDUNG DINAS PERDAGANGAN & PERINDUSTRIAN
20. GEDUNG DINAS SOSIAL
21. GEDUNG DINAS UKM & KOPERASI
22. GEDUNG DINAS PERTANAHAN
23. GEDUNG DINAS PERTANIAN
24. GEDUNG DINAS PERIKANAN & KELAUTAN
25. GEDUNG DINAS TENAGA KERJA & TRANSMIGRASI
26. GEDUNG DINAS TATA KOTA
27. GEDUNG DINAS PERTAMANAN
28. GEDUNG DINAS KEBERSIHAN
29. GEDUNG DINAS PEMADAM KEBAKARAN
30. GEDUNG DINAS PERKEBUNAN
31. GEDUNG DINAS KEHUTANAN
32. GEDUNG KONI
33. GEDUNG KOMITE PEMILIHAN UMUM
34. GEDUNG SPOLO
35. GEDUNG D INAS PAJAK & PENDAPATAN DAERAH
36. GEDUNG DINAS PERHUBUNGAN
37. GEDUNG SATU ATAP (KANTOR BERSAMA)
38. GEDUNG KELUARGA BERENCANA DAN PEMBERDAYAAN PEREMPUAN
39. GEDUNG KESATUAN BANGSA DAN PERLINDUNGAN MASYARAKAT
40. GEDUNG PENGO LAHAN DATA DAN INFORMASI
41. GEDUNG MAJELIS ULA MA INONESIA
42. GEDUNG SERBAGUNA & WISMA HAJI
43. GEDUNG KWARTIR DAERAH PRAMUKA
44. GEDUNG PLN/ KOMPLEKS ENERGI
45. GEDUNG TELKO M/ KOMPLEKS TELEKOMUNIKASI
46. GEDUNG GABENSI & INKINDO
47. GEDUNG PDAM
48. GEDUNG PEMUDA & GELANGGAN REMAJA
49. RENCANA STADION OLAH RAGA
50. RENCANA RUMAH SAKIT UMUM
51. RENCANA RRI & TV PENAJAM
52. RENCANA KOMPONEN PUSAT KEBUDAYAAN & MUSEUM
53. & 55 TO BE NAME
Possible location 1

Location 1: using government's land
A new ring road (plan)

Location 2: people’s choice, High access
Possible location 3, investor choice: good scenery, headed to the sea, united with CBD

Mining exploitation

8.5 KM

2.1 KM

NIPAH

PENAJAM PORT

BALIKPAPAN BAY